Detection of 3-Acetyldoxynivalenol, 15-Acetyldoxynivalenol and Nivalenol-Chemotypes of Fusarium graminearum from Iran using specific PCR assays

Mostafa Abedi-Tizaki¹ and Seyed kazem Sabbagh²*

¹Department of Plant Protection, College of Agriculture, University of Zabol, Iran
²Department of Plant Protection and Institute of Plant Biotechnology (Biocenter), University of Zabol, Iran

*Corresponding for author: sk.sabbagh@uoz.ac.ir

Abstract

Fusarium graminearum is a serious causing agent of Fusarium Head Blight (FHB) or scab of wheat. It produces different types of trichothecene mycotoxins that are detrimental to both humans and domestic animals. These fungi produce various types of trichothecene mycotoxins, principally including nivalenol (NIV), deoxynivalenol (DON), 3-acetyldoxynivalenol (3-AcDON) and 15-acetyldoxynivalenol (15-AcDON). In this research, in order to determine the trichothecene chemotypes, a total of 100 isolates of F. graminearum were collected from different fields in Golestan province (Iran). The identity of species were determined using morphological criteria and then were confirmed using species-specific Fg16 primers. A genomic Polymerase Chain Reaction (PCR) was developed to predict the chemotypes based on the sequence of the Tri3 gene. Out of the 100 tested F. graminearum isolates, 72 detected a 549 bp fragment from NIV chemotypes, 10 yielded a 583 bp fragment from 3-AcDON chemotypes and 18 yielded an 863 bp fragment from 15-AcDON producing isolates. According to our findings, NIV chemotype was predominant in the studied areas.

Keywords: Fusarium graminearum; Trichothecene; NIV (Nivalenol); DON (Deoxynivalenol) 3- AcDON (3-Acetyldoxynivalenol); 15-AcDON (15-acetyldoxynivalenol); Tri3.

Introduction

Fusarium graminearum Schwabe [teleomorph: Gibberella zeae (Schwein) Petch] is a fungal pathogen of various crops and is the main causal agent of "Fusarium Head Blight" (FHB) of wheat (Cook, 1981; Kommedahl and Windels, 1981). FHB is known to reduce the yield of grain products. The fungal agent can also contaminate the grains with toxic secondary metabolites (mycotoxins) which cause a health risk to both humans and animals (Marasas et al., 1984; McMullen et al., 1997). The fungus produce various types of trichothecens such as deoxynivalenol (DON chemotype), Nivalenol (NIV chemotype) and their several acetylated derivatives, 3-acetyldoxynivalenol (3-ADON) and 15-acetyldoxynivalenol (15-ADON) as well as an estrogenic mycotoxin, Zearalenone (Mirocha et al., 1989; Seo et al., 1996). The presence of DON and NIV chemotypes and occurrences of their acetylated derivatives have been reported by different authors (Placinta et al., 1999). Specifically, the NIV chemotype has been reported in several countries of Africa (Mirocha et al., 1989), Asia and Europe (Desjardins et al., 2000; Jennings et al., 2004a) and America (Puri and Zhong, 2010) but it has not yet been reported in North America (Abbas et al., 1989). In cereals infected with Fusarium, the DON chemotype was found worldwide but presence of the NIV chemotype is restricted to geographically specific regions (Desjardins et al., 2000). The 15-ADON chemotype is predominant in North America while the 3-AcDON chemotype is predominant in some areas of Asia including China, Australia and New Zealand (Li et al., 2005; Mirocha et al., 1989). Current molecular studies have shown that the 3-ADON chemotype is replacing 15-ADON from eastern to western Canada (Ward et al., 2008) where isolates belonging to the 3-ADON chemotype accumulate more triothecenes than those belonging to the 15-ADON chemotype (Alvarez et al., 2009). Miller et al. (1991) indicated that 15-AcDON production was prevalent in USA and 3-AcDON production in Asia. Epidemics of FHB occur frequently in northern Iran (Golzar et al., 1998; Safaei et al., 2005). DON and NIV chemotypes differ only at the C-4 position; NIV has a hydroxyl group at this position whereas DON does not (Hye-Seon et al., 2003). Each F. graminearum isolate is either a DON or an NIV producer (Ichinoe et al., 1983; Seo et al., 1996). Although the molecular genetics of trichothecene production by Fusarium species have been studied intensively (Hohn et al., 1998), the biosynthetic and genetic bases for chemotype determination are not well understood. Molecular structures of trichothecene mycotoxin biosynthesis pathways have been demonstrated the mycotoxin gene clusters and their regulations (Gutleb et al., 2002; Hye-Seon et al., 2003; Lee et al., 2001; O'Donnell et al., 2000). Chemical analyses and determination of the mycotoxin chemotype of toxigenic F. graminearum is a laborious and time-consuming process (Jian-Hua et al., 2008). Recently, PCR-based assays have been used to determine the mycotoxin chemotype based on the sequences of the Tri7 and Tri3 genes sequence of F. graminearum (Hye-Seon et al., 2003; Setiert and Le vesque, 2004; Wang et al., 2008; Yörük and Albayrak, 2012). Tri3 is located between Tri7 and Tri4 and highly conserved for two chemotypes (Brown et al., 2002; Lee et al., 2001; Lee et al., 2002). The aim of the research was to characterize the exact chemotypes of F. graminearum, the main agent to cause head blight on winter wheat in northern Iran during 2010-2011 in order to
understand structure population and distribution of this species.

Results

Fusarium graminearum identification

A total of one hundred isolates of *Fusarium* species obtained from seven different areas belonging to Golestan province in north of Iran were identified as a *F. graminearum* species based on morphological criteria. All isolates were confirmed as *F. graminearum* by a single pair species-specific primer (Fg16F/Fg16R). All samples produced a common band ranging from 420-520 bp for all studied isolates, as described by Nicholson et al. (1998) (Fig. 1a). These data and the morphological examination confirmed that all studied isolates were belonged to *F. graminearum* clade (Table 1).

Chemotype determination

Chemotyping of collected isolates was done by PCR assays using a set of specific primer of *Tri*3 gene sequence including: *Tri*3NIV, *Tri*303 and *Tri*315 (Table 1). The results obtained from PCR reaction with *Tri*3NIV showed the presence of the NIV chemotype in our isolates. Primers *Tri*3NIV produced a fragment of 549 bp length in seventy two isolates in the result of *Tri*3 gene sequence amplification (Fig. 1b). Of 100 studied isolates subjected to developed PCR assays based on *Tri*3 primer, 72 isolates were detected as NIV chemotypes (See complementary data). This result indicates that the majority of isolates have a potential to produce of NIV chemotype. Two sets of primers, *Tri*315F/*Tri*315R and *Tri*303F/*Tri*303R, were used to determine the 15-ADON mycotoxin and 3-ADON sub-

![Fig. 1. (a) PCR products ranging of 420-520 bp by using Fg16F/Fg16R specific primer pair in all *Fusarium* isolates. (b) Amplification products from *Tri*3NIVF/*Tri*3NIVR primers, specific to NIV chemotype, (c) *Tri*303F/*Tri*303R specific to 3-ADON chemotype and (d) *Tri*315F/*Tri*315R primers specific to 15-ADON chemotype. Lane M: marker (100bp); Lane C, negative control (omitting DNA template); Codes numbers above the panel correspond to the strain codes of *F. graminearum* in complementary data.]

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence(5’→3’)</th>
<th>Size(bp)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fg16F/Fg16R</td>
<td>CTCCGGATATGTTGGTGCTCAAGGTAGTTATCCCGAATGGCAAA</td>
<td>400–500</td>
<td>Nicholson et al. (1998)</td>
</tr>
<tr>
<td>Tri3NIVF/Tri3NIVR</td>
<td>GGACGGTASTACTTGGCAACCCAGRCGTCTCTAAAGAARGGB</td>
<td>549</td>
<td>Jennings et al. (2004a)</td>
</tr>
<tr>
<td>Tri303F/Tri303R</td>
<td>GATGGCCGAAGTCTGACCCGTCTCATTG</td>
<td>583</td>
<td>Jennings et al. (2004a)</td>
</tr>
<tr>
<td>Tri315F/Tri315R</td>
<td>CTCGCGTAAGTGGACGTAAATGCTCTCAACGGACACAC</td>
<td>863</td>
<td>Jennings et al. (2004a)</td>
</tr>
</tbody>
</table>

S= C or G, R= A or G

Table 1. Primers sequences used in this study.
chemotyping of *F. graminearum* were used to understand the spatial distribution of these toxins in wheat from the Gorgan province. It has been suggested that knowledge of *Fusarium* chemotype’s distribution could be implemented in forecasting schemes for disease development and mycotoxin contamination on a geographical region (Jennings et al., 2004b; Scou et al., 2009). Owing to highlighting the variability of toxin production among strains of *F. graminearum* (Desjardins, 2008), we developed three sets of primers to target the Tri3 gene (*Tri3NIV, Tri303, Tri315*) following PCR assays to determine the chemotype of each *F. graminearum* isolate. This work was the first study of chemotype distribution performed on Golestan province using a large population, with the molecular identification of *F. graminearum*. The trichothecene chemotype distribution analysis among the wheat cultivated in the region of this province revealed that the NIV chemotype was the most dominant type. In addition, two other types: 3-ADON and 15-ADON were always found throughout the sampling area. This chemotype (NIV) is more toxic than DON and is therefore a serious threat for both human and animals (Ryu et al., 1988). So it is necessary to reduce the toxin in this region by using a resistant variety and act to eliminate the toxin from infected farms. Information about secondary metabolites produced by this fungus as toxins and effective factors to inhibit toxin production, using a molecular approach could help to decrease and control the presence of the toxin in crops and food. At this time, little is known about trichothecene chemotypes in different regions of Iran. Haratian et al. (2008) reported that the NIV chemotype was dominant in Mazandaran province in northern Iran and those results were in accordance with this research. Amplification product size of the Tri3 primer was similar to other related researches (Ji et al., 2007). Ji et al. (2007) also found that the most frequently encountered chemotype detected with *Tri3NIV* was the 15-AcDON chemotype while Jennings et al. (2004b) discovered that the 3-AcDON chemotype was detected by the *Tri303* primer. Regarding detection of chemotypes with *Tri3* primer in all isolates, it can be deduced that the *Tri3* gene is most probably contributed in production of Deoxynivalenol acetyl derivatives in *F. graminearum* isolates. *Tri3* gene encoding a 15-O-acetyltransferase enzyme which has an important role in C-15 acetylation, involved in trichothecene biosynthesis (Reynoso et al., 2011). In Europe and South America, the DON chemotype was dominant comparing NIV (Carter et al., 2002). Analysis of different chemotypes in wheat farms of Argentina showed that 15-AcDON chemotype had higher frequency than 3-AcDON (Alvarez et al., 2009). This variation could be due to an effect of geology in a specific region. On the other hand, our finding from Iran showed less diversity comparing nearby regions. It worth to note that, based on recent studies on *F. graminearum* in Canada and United States, the isolates with 3-AcDON chemotype were more aggressive than those with 15-AcDON and also the 3-AcDON chemotype isolate, since they produced more DON (Puri and Zhong, 2010; Von der Ohe et al., 2010). Distribution of these chemotypes is variable across the globe. In some regions of Asia and China, Australia, New Zealand and northern Europe, the 3-AcDON chemotype is the most dominant whilst the 15-AcDON chemotype is more dominant in North America, central Europe and southern Russia (Quarta et al., 2006).

Materials and methods

Fungal isolates and identification

Kernel samples of winter durum wheat with the characteristic scab symptom were collected from seven different regions of Golestan province during 2010-2011. . The most common wheat varieties were Tajan, Zagros and Kooohdasht. Surface-sterilized rachises were placed on a *Fusarium*-selective peptone pentachloronitrobenzene (PCNB) agar (Nirenberg, 1976). Single-spore isolates were cultured on both potato dextrose agar (PDA) and carnation leaf-piece agar (CL) plates and incubated at 25 °C in a 12-h light/dark cycle for 10 days. Isolates were identified as *F. graminearum* according to the morphological criteria on PDA and the cylindrical macroconidia on CLA medium (Burgess et al., 1994; Nelson et al., 1983).

DNA extraction

DNA was extracted from the mycelia of 4 to 5 day-old cultures grown in potato dextrose broth (PDB). The mycelia were freeze-dried and ground to a fine powder and total genomic DNA was extracted using the CTAB method as described by Nicholson et al. (1998).

PCR amplification

Three sets of primers specific designed based on the trichothecene *Tri3* gene to the individual mycotoxin-producer chemotypes and were used to perform PCR detection assays (Table 1). These primers for the *Tri3* gene were developed based on Jennings et al. (2004a). PCR reactions were carried out in 25 μl volumes containing 50 ng of genomic DNA, 1.5 μl 10× buffer (100 mM Tris–HCl, 15 mM MgCl2, 500 Mm KCl, pH 8), 2 mM MgCl2, 0.2 mM dNTPs, 0.75U DNA *Taq* polymerase (Roche, Germany) 2 mM MgCl2 (Roche, Germany), and 0.4 μM each primer. A negative control, containing all reagents but with no DNA, was used in every set of reactions. PCRs were carried out in an Eppendorf thermocycler and the cycling conditions consisted of

Table 2. Distribution of trichothecen chemotypes of *F. graminearum* from region different in Golestan province.

<table>
<thead>
<tr>
<th>Region survey</th>
<th>3-AcDON</th>
<th>15-AcDON</th>
<th>NIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gorgan</td>
<td>2</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Kordku</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Bandargaz</td>
<td>0</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Gonbad</td>
<td>3</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Minoodasht</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Kalaleh</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Azadshar</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>18</td>
<td>72</td>
</tr>
</tbody>
</table>
denaturation at 94°C for 5 min, followed by 30 cycles of 94°C for 30s, 57°C for 30 s and 72°C for 60 s with a final extension step of 72°C for 5 min. The annealing modified temperatures were 60, 53 and 53°C for Tri3NIVF/Tri3NIVR, Tri315F/Tri315R and Tri303F/Tri303R, respectively. The samples were then cooled to 4°C until recovery. PCR products were separated by electrophoresis through 1.2% agarose gels. The gels were stained with ethidium bromide and photographed under UV light.

Species-specific PCR assay

Molecular identification of the collected isolates was further confirmed using specific primer Fg16F and Fg16R (Nicholson et al., 1998) which produces a product of 420-520 bp DNA fragment specific to F. graminearum (Table 1).

Conclusion

In this work, a set of primers based on the Tri3 gene sequences of F. graminearum clade was designed that detected a chemotype-specific DNA fragment with different sizes from 3-AcDON-, 15-AcDON and NIV-producers of F. graminearum clade strains. Here, we can conclude that the PCR assays could be a beneficial approach for rapid and sensitive detection and identification of Fusarium species, the major producer of trichothecene. This tool can be readily used to boost the expediency of disease control and prevention practice to secure healthy food and food products.

Acknowledgements

We thank Mrs. Hamideh Khajeh for her assistance technique. This work was supported by Institute of Plant Biotechnology of Zabol University

References

Mc Mullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-

Specific PCR assay

Molecular identification of the collected isolates was further confirmed using specific primer Fg16F and Fg16R (Nicholson et al., 1998) which produces a product of 420-520 bp DNA fragment specific to F. graminearum (Table 1).

Conclusion

In this work, a set of primers based on the Tri3 gene sequences of F. graminearum clade was designed that detected a chemotype-specific DNA fragment with different sizes from 3-AcDON-, 15-AcDON and NIV-producers of F. graminearum clade strains. Here, we can conclude that the PCR assays could be a beneficial approach for rapid and sensitive detection and identification of Fusarium species, the major producer of trichothecene. This tool can be readily used to boost the expediency of disease control and prevention practice to secure healthy food and food products.

Acknowledgements

We thank Mrs. Hamideh Khajeh for her assistance technique. This work was supported by Institute of Plant Biotechnology of Zabol University

References

Puri KD, Zhong S (2010) The 3ADON population of Fusarium graminearum found in North Dakota is more aggressive and produces a higher level and DON than the prevalent 15ADON population in spring wheat. Phytopathology. 100:1007-1014.

